Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.118
Filtrar
1.
Mol Cell Endocrinol ; 586: 112197, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462124

RESUMO

Polymorphisms located within NOS3 gene have been investigated as susceptibility variants for diabetic nephropathy (DN) in type 2 diabetes mellitus (T2DM) in a large number of studies. However, these previous articles yielded inconsistent results and we aimed at elucidating the impact of NOS3 variants on DN risk in T2DM by conducting an updated systematic data synthesis. A total of 36 studies (12,807 participants) were selected for qualitative data synthesis, while 33 records with 11,649 subjects were included in the meta-analysis. The pooled analysis demonstrated the association of minor alleles of rs2070744 and rs1799983 with an increased susceptibility to DN (P < 0.001 and P = 0.015 for allelic model, respectively). For both of these variants, a significant effect of subgrouping according to ethnicity was found. Rs869109213 displayed an association with DN susceptibility, with pooled effect measures indicating a predisposing effect of the minor allele a (Prec = 0.002, ORrec = 1.960, 95%CI 1.288-2.983; Paavs. bb = 0.001, ORaavs. bb = 2.014, 95%CI 1.316-3.083). These findings support the effects of NOS3 variants on the risk of developing DN in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/genética , Diabetes Mellitus Tipo 2/genética , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo Genético , Óxido Nítrico Sintase/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único/genética , Genótipo
2.
Cell Commun Signal ; 22(1): 138, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374138

RESUMO

BACKGROUND: Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT: This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION: The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.


Assuntos
Matriz Extracelular , Óxido Nítrico Sintase Tipo III , Plasma , Lesões do Sistema Vascular , Humanos , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , 60489 , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/farmacologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/terapia , Plasma/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38278206

RESUMO

To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate oxidase (NOX), which produces the superoxide anion (O2-), in the innate immunity of Eriocheir sinensis, the full lengths of the NOS and NOX genes were cloned via rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of E. sinensis were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with Aeromonas hydrophila, NOS expression was significantly up-regulated at 3, 6, and 48 h, and NOX expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of E. sinensis was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O2-, and H2O2, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O2- and H2O2) were induced in E. sinensis after bacterial stimulation, which then exert antibacterial immunity.


Assuntos
Braquiúros , Peróxido de Hidrogênio , Animais , Peróxido de Hidrogênio/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Antibacterianos/farmacologia , Proteínas Recombinantes/genética , Bactérias/metabolismo , Braquiúros/genética , Imunidade Inata , Filogenia , Proteínas de Artrópodes/genética , Hemócitos/metabolismo
4.
J Anesth ; 38(1): 44-56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37910301

RESUMO

PURPOSE: The role of the nitric oxide synthases (NOSs) system in cerebral infarction has been examined in pharmacological studies with non-selective NOSs inhibitors. However, due to the non-specificity of the non-selective NOSs inhibitors, its role remains to be fully elucidated. We addressed this issue in mice in which neuronal, inducible, and endothelial NOS isoforms were completely disrupted. METHODS AND RESULTS: We newly generated mice lacking all three NOSs by crossbreeding each single NOS-/- mouse. In the male, cerebral infarct size at 24 h after middle cerebral artery occlusion (MCAO) was significantly smaller in the triple n/i/eNOSs-/- genotype as compared with wild-type genotype. Neurological deficit score and mortality rate were also significantly lower in the triple n/i/eNOSs-/- than in the WT genotype. In contrast, in the female, there was no significant difference in the cerebral infarct size in the two genotypes. In the male triple n/i/eNOSs-/- genotype, orchiectomy significantly increased the cerebral infarct size, and in the orchiectomized male triple n/i/eNOSs-/- genotype, treatment with testosterone significantly reduced it. Cyclopaedic and quantitative comparisons of mRNA expression levels in cerebral infarct lesions between the male wild-type and triple n/i/eNOSs-/- genotypes at 1 h after MCAO revealed significant involvements of decreased oxidative stress and mitigated mitochondrial dysfunction in the alleviated cerebral infarction in the male triple n/i/eNOSs-/- genotype. CONCLUSIONS: These results provide the first evidence that the NOSs system exerts a deleterious effect against acute ischemic brain injury in the male.


Assuntos
Infarto da Artéria Cerebral Média , Óxido Nítrico Sintase , Camundongos , Masculino , Feminino , Animais , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Isoformas de Proteínas/metabolismo , Estresse Oxidativo , Óxido Nítrico , Camundongos Knockout
5.
Plant J ; 117(5): 1453-1465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38117481

RESUMO

Pungent capsaicinoid is synthesized only in chili pepper (Capsicum spp.). The production of vanillylamine from vanillin is a unique reaction in the capsaicinoid biosynthesis pathway. Although putative aminotransferase (pAMT) has been isolated as the vanillylamine synthase gene, it is unclear how Capsicum acquired pAMT. Here, we present a phylogenetic overview of pAMT and its homologs. The Capsicum genome contained 5 homologs, including pAMT, CaGABA-T1, CaGABA-T3, and two pseudogenes. Phylogenetic analysis indicated that pAMT is a member of the Solanaceae cytoplasmic GABA-Ts. Comparative genome analysis found that multiple copies of GABA-T exist in a specific Solanaceae genomic region, and the cytoplasmic GABA-Ts other than pAMT are located in the region. The cytoplasmic GABA-T was phylogenetically close to pseudo-GABA-T harboring a plastid transit peptide (pseudo-GABA-T3). This suggested that Solanaceae cytoplasmic GABA-Ts occurred via duplication of a chloroplastic GABA-T ancestor and subsequent loss of the plastid transit signal. The cytoplasmic GABA-T may have been translocated from the specific Solanaceae genomic region during Capsicum divergence, resulting in the current pAMT locus. A recombinant protein assay demonstrated that pAMT had higher vanillylamine synthase activity than those of other plant GABA-Ts. pAMT was expressed exclusively in the placental septum of mature green fruit, whereas tomato orthologs SlGABA-T2/4 exhibit a ubiquitous expression pattern in plants. These findings suggested that both the increased catalytic efficiency and transcriptional changes in pAMT may have contributed to establish vanillylamine synthesis in the capsaicinoid biosynthesis pathway. This study provides insights into the establishment of pungency in the evolution of chili peppers.


Assuntos
Benzilaminas , Capsicum , Solanaceae , Gravidez , Feminino , Humanos , Capsicum/metabolismo , Capsaicina/metabolismo , Transaminases/metabolismo , Filogenia , Placenta/metabolismo , Solanaceae/genética , Solanaceae/metabolismo , Óxido Nítrico Sintase/genética , Ácido gama-Aminobutírico/metabolismo , Frutas/genética , Frutas/metabolismo
6.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189001, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858621

RESUMO

Nitric oxide (NO), a gaseous radical, governs a variety of physiological and pathological processes, including cancer, pro-inflammatory signalling, and vasodilation. The family of nitric oxide synthases (NOS), which comprises the constitutive forms, nNOS and eNOS, and the inducible form, iNOS, produces NO enzymatically. Additionally, NO can be generated non-enzymatically from the nitrate-nitrite-NO pathway. The anti- and pro-oxidant properties of NO and its functional dualism in cancer is due to its highly reactive nature. Numerous malignancies have NOS expression, which interferes with the tumour microenvironment to modulate the tumour's growth in both favourable and unfavourable ways. NO regulates a number of mechanisms in the tumour microenvironment, including metabolism, cell cycle, DNA repair, angiogenesis, and apoptosis/necrosis, depending on its concentration and spatiotemporal profile. This review focuses on the bi-modal impact of nitric oxide on the alteration of a few cancer hallmarks.


Assuntos
Neoplasias , Óxido Nítrico , Humanos , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral
7.
Hum Mol Genet ; 33(1): 33-37, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738569

RESUMO

Inhaled nitric oxide (NO) therapy has been reported to improve lung growth in premature newborns. However, the underlying mechanisms by which NO regulates lung development remain largely unclear. NO is enzymatically produced by three isoforms of nitric oxide synthase (NOS) enzymes. NOS knockout mice are useful tools to investigate NO function in the lung. Each single NOS knockout mouse does not show obvious lung alveolar phenotype, likely due to compensatory mechanisms. While mice lacking all three NOS isoforms display impaired lung alveolarization, implicating NO plays a pivotal role in lung alveolarization. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing L-arginine, the sole precursor for NOS-dependent NO synthesis. ASL is also required for channeling extracellular L-arginine into a NO-synthetic complex. Thus, ASL deficiency (ASLD) is a non-redundant model for cell-autonomous, NOS-dependent NO deficiency. Here, we assessed lung alveolarization in ASL-deficient mice. Hypomorphic deletion of Asl (AslNeo/Neo) results in decreased lung alveolarization, accompanied with reduced level of S-nitrosylation in the lung. Genetic ablation of one copy of Caveolin-1, which is a negative regulator of NO production, restores total S-nitrosylation as well as lung alveolarization in AslNeo/Neo mice. Importantly, NO supplementation could partially rescue lung alveolarization in AslNeo/Neo mice. Furthermore, endothelial-specific knockout mice (VE-Cadherin Cre; Aslflox/flox) exhibit impaired lung alveolarization at 12 weeks old, supporting an essential role of endothelial-derived NO in the enhancement of lung alveolarization. Thus, we propose that ASLD is a model to study NO-mediated lung alveolarization.


Assuntos
Argininossuccinato Liase , Óxido Nítrico , Animais , Camundongos , Argininossuccinato Liase/genética , Óxido Nítrico Sintase/genética , Arginina/genética , Camundongos Knockout , Pulmão , Isoformas de Proteínas , Mamíferos
8.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446358

RESUMO

Nitric oxide (NO) is a key signaling molecule in almost all organisms and is active in a variety of physiological and pathological processes. Our understanding of the peculiarities and functions of this simple gas has increased considerably by extending studies to non-mammal vertebrates and invertebrates. In this review, we report the nitric oxide synthase (Nos) genes so far characterized in chordates and provide an extensive, detailed, and comparative analysis of the function of NO in the aquatic chordates tunicates, cephalochordates, teleost fishes, and amphibians. This comprehensive set of data adds new elements to our understanding of Nos evolution, from the single gene commonly found in invertebrates to the three genes present in vertebrates.


Assuntos
Cordados , Animais , Cordados/genética , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase/genética , Invertebrados , Vertebrados
9.
Nitric Oxide ; 138-139: 85-95, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451608

RESUMO

INTRODUCTION: Several published studies have reported an association between the Glu298Asp polymorphism (rs1799983), residing in the endothelial nitric oxide synthase (NOS3) gene, and lower levels of circulating nitric oxide, as well as an increased risk of coronary artery disease (CAD). However, association status of this genetic variant with acute coronary syndrome (ACS) or premature CAD (PCAD) is still unclear. Against this background, we conducted a systematic review and study level meta-analysis to assess the association of the NOS3 Glu298Asp polymorphism with ACS or PCAD. MATERIALS AND METHODS: A comprehensive online search to identify relevant studies was performed on several databases including PubMed, EMBASE, MEDLINE, Scopus, Cochrane library and Web of Science. The identified studies were stratified into two ancestral subgroups: 'European ancestry' and 'All other ancestries combined'. Study level odds ratios (ORs) and their 95% confidence intervals (CI) were pooled using random/fixed effects employing a Z test. RESULTS: Out of a total of 195 distinct records identified through online search, 37 articles with 39 different studies, with a total sample size of 27,441 (11,516 cases/15,925 controls) were included for quantitative synthesis. Pooled results suggested significant associations of the NOS3 Glu298Asp polymorphism with ACS or PCAD through dominant as well as allelic genetic models (p ≤ 0.002), primarily driven by the 'All other ancestries combined' subgroup. The 'All other ancestries combined' subgroup demonstrated an additional risk of 36% for ACS or PCAD, through both dominant and allelic genetic models (OR = 1.36, 95%CI = 1.13, 1.63, p = 0.001 and OR = 1.36, 95%CI = 1.14, 1.61, p = 0.0005 respectively). On the other hand, the 'European ancestry' subgroup did not show any significant associations. Sensitivity analysis and a sub-analysis for the myocardial infarction endpoint further supported these observed associations. CONCLUSIONS: This meta-analysis indicates towards an association between the NOS3 Glu298Asp polymorphism and ACS or PCAD, predominantly driven by 'All other ancestries combined' subgroup. In contrast, the 'European ancestry' subgroup did not demonstrate any significant association. Further large-scale investigations are required to confirm our derived results.


Assuntos
Síndrome Coronariana Aguda , Doença da Artéria Coronariana , Óxido Nítrico Sintase Tipo III , Humanos , Síndrome Coronariana Aguda/genética , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença , Genótipo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo de Nucleotídeo Único
10.
Sci Adv ; 9(21): eade7280, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235659

RESUMO

Mechanisms underlying arteriovenous malformations (AVMs) are poorly understood. Using mice with endothelial cell (EC) expression of constitutively active Notch4 (Notch4*EC), we show decreased arteriolar tone in vivo during brain AVM initiation. Reduced vascular tone is a primary effect of Notch4*EC, as isolated pial arteries from asymptomatic mice exhibited reduced pressure-induced arterial tone ex vivo. The nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-l-arginine (L-NNA) corrected vascular tone defects in both assays. L-NNA treatment or endothelial NOS (eNOS) gene deletion, either globally or specifically in ECs, attenuated AVM initiation, assessed by decreased AVM diameter and delayed time to moribund. Administering nitroxide antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl also attenuated AVM initiation. Increased NOS-dependent production of hydrogen peroxide, but not NO, superoxide, or peroxynitrite was detected in isolated Notch4*EC brain vessels during AVM initiation. Our data suggest that eNOS is involved in Notch4*EC-mediated AVM formation by up-regulating hydrogen peroxide and reducing vascular tone, thereby permitting AVM initiation and progression.


Assuntos
Malformações Arteriovenosas , Peróxido de Hidrogênio , Óxido Nítrico Sintase Tipo III , Animais , Camundongos , Artérias/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Nitroarginina/farmacologia
11.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175633

RESUMO

Genetic susceptibility may influence ischemic heart disease (IHD) predisposition and affect coronary blood flow (CBF) regulation mechanisms. The aim of this study was to investigate the association among single nucleotide polymorphisms (SNPs) of genes encoding for proteins involved in CBF regulation and IHD. A total of 468 consecutive patients were enrolled and divided into three groups according to coronary angiography and intracoronary functional tests results: G1, patients with coronary artery disease (CAD); G2, patients with coronary microvascular dysfunction (CMD); and G3, patients with angiographic and functionally normal coronary arteries. A genetic analysis of the SNPs rs5215 of the potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) gene and rs1799983 of the nitric oxide synthase 3 (NOS3) gene, respectively encoding for the Kir6.2 subunit of ATP sensitive potassium (KATP) channels and nitric oxide synthase (eNOS), was performed on peripheral whole blood samples. A significant association of rs5215_G/G of KCNJ11 and rs1799983_T/T of NOS3 genes was detected in healthy controls compared with CAD and CMD patients. Based on univariable and multivariable analyses, the co-presence of rs5215_G/G of KCNJ11 and rs1799983_T/T of NOS3 may represent an independent protective factor against IHD, regardless of cardiovascular risk factors. This study supports the hypothesis that SNP association may influence the crosstalk between eNOS and the KATP channel that provides a potential protective effect against IHD.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Humanos , Trifosfato de Adenosina , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença , Isquemia Miocárdica/genética , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Polimorfismo de Nucleotídeo Único
12.
Clin Respir J ; 17(6): 516-526, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076778

RESUMO

INTRODUCTION: This study examines the associations between asthma and nitric oxide (NO) synthase (NOS) gene polymorphisms. METHODS: After a systematic literature search in electronic databases, studies were selected based on eligibility criteria. Data were extracted from research articles and were synthesized and tabulated. Where a particular polymorphism data were reported by multiple studies, meta-analyses of odds ratios were performed, or odds ratios reported by individual studies were pooled. RESULTS: Twenty studies (4450 asthma patients and 5306 non-asthmatic individuals) were identified. Many studies did not find any association between CCTTT repeat polymorphism in NOS2 gene and asthma. However, a study reported that pretreatment mean exhaled NO levels in asthmatics were found to be significantly higher in genotypes with higher number of CCTTT repeats. Also, alleles with <11 CCTTT repeats were associated with poor asthma treatment outcomes. A single nucleotide polymorphism, G894T, in NOS3 gene was not found to be significantly associated with asthma by at least four studies. However, a T allele at this locus was associated with lower NO levels. Also, G894T frequency was significantly higher in asthmatic children who responded to inhaled corticosteroids along with long-lasting beta2-agonists. A T allele of NOS3 786C/T polymorphism increased the probability of bronchial asthma with comorbid essential hypertension in asthma patients. Asthma severity also differed for different Ser608Leu exon 16 variants of NOS2 gene. CONCLUSIONS: Several polymorph NOS gene variants are identified, some of which appear to have influence on asthma prevalence or outcomes. However, data are varying depending on the nature of variant, ethnicity, study design, and disease parameters.


Assuntos
Asma , Óxido Nítrico Sintase Tipo III , Criança , Humanos , Frequência do Gene , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase/genética , Polimorfismo de Nucleotídeo Único , Genótipo , Asma/tratamento farmacológico , Asma/epidemiologia , Asma/genética , Óxido Nítrico/análise
13.
J Appl Oral Sci ; 31: e20220436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36946828

RESUMO

METHODOLOGY: Inducible nitric oxide synthase (iNOS) is one of the enzymes responsible for the synthesis of nitric oxide (NO), which is an important signaling molecule with effects on blood vessels, leukocytes, and bone cells. However, the role of iNOS in alveolar bone healing remains unclear. This study investigated the role of iNOS in alveolar bone healing after tooth extraction in mice. C57Bl/6 wild type (WT) and iNOS genetically deficient (iNOS-KO) mice were subjected to upper incision tooth extraction, and alveolar bone healing was evaluated by micro-computed tomography (µCT) and histological/histomorphometric, birefringence, and molecular methods. RESULTS: The expression of iNOS had very low control conditions, whereas a significant increase is observed in healing sites of WT mice, where iNOS mRNA levels peak at 7d time point, followed by a relative decrease at 14d and 21d. Regarding bone healing, both WT and iNOS-KO groups showed the usual phases characterized by the presence of clots, granulation tissue development along the inflammatory cell infiltration, angiogenesis, proliferation of fibroblasts and extracellular matrix synthesis, bone neoformation, and remodeling. The overall micro-computed tomography and histomorphometric and birefringence analyses showed similar bone healing readouts when WT and iNOS-KO strains are compared. Likewise, Real-Time PCR array analysis shows an overall similar gene expression pattern (including bone formation, bone resorption, and inflammatory and immunological markers) in healing sites of WT and iNOS-KO mice. Moreover, molecular analysis shows that nNOS and eNOS were significantly upregulated in the iNOS-KO group, suggesting that other NOS isoforms could compensate the absence of iNOS. CONCLUSION: The absence of iNOS does not result in a significant modulation of bone healing readouts in iNOS-KO mice. The upregulation of nNOS and eNOS may compensate iNOS absence, explaining the similar bone healing outcome in WT and iNOS-KO strains.


Assuntos
Osso e Ossos , Óxido Nítrico Sintase , Cicatrização , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Regulação para Cima , Microtomografia por Raio-X , Osso e Ossos/lesões
14.
BMC Plant Biol ; 23(1): 163, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973660

RESUMO

BACKGROUND: Cyanide is a toxic chemical that inhibits cellular respiration. In plants, cyanide can be produced by themselves, especially under stressful conditions. Cyanoalanine synthase (CAS) is a key enzyme involved in plant cyanide detoxification. There are three genes encoding CAS in Arabidopsis thaliana, but the roles of these genes in the plant's response to stress are less studied. In addition, it is known that alternative oxidase (AOX) mediates cyanide-resistant respiration, but the relationship between CAS and AOX in regulating the plant stress response remains largely unknown. RESULTS: Here, the effects of the overexpression or mutation of these three CAS genes on salt stress tolerance were investigated. The results showed that under normal conditions, the overexpression or mutation of the CAS genes had no significant effect on the seed germination and growth of Arabidopsis thaliana compared with wild type (WT). However, under 50, 100, and 200 mM NaCl conditions, the seeds overexpressing CAS genes showed stronger salt stress resistance, i.e., higher germination speed than WT seeds, especially those that overexpressed the CYS-C1 and CYS-D1 genes. In contrast, the seeds with CAS gene mutations exhibited salt sensitivity, and their germination ability and growth were significantly damaged by 100 and 200 mM NaCl. Importantly, this difference in salt stress resistance became more pronounced in CAS-OE, WT, and mutant seeds with increasing salt concentration. The CAS-OE seeds maintained higher respiration rates than the WT and CAS mutant seeds under salt stress conditions. The cyanide contents in CAS mutant seeds were approximately 3 times higher than those in WT seeds and more than 5 times higher than those in CAS-OE seeds. In comparison, plants overexpressing CYS-C1 had the fastest detoxification of cyanide and the best salt tolerance, followed by those overexpressing CYS-D1 and CYS-D2. Furthermore, less hydrogen sulfide (H2S) was observed in CAS-OE seedlings than in WT seedlings under long-term salt stress conditions. Nonetheless, the lack of AOX impaired CAS-OE-mediated plant salt stress resistance, suggesting that CAS and AOX interact to improve salt tolerance is essential. The results also showed that CAS and AOX contributed to the reduction in oxidative damage by helping maintain relatively high levels of antioxidant enzyme activity. CONCLUSION: In summary, the findings of the present study suggest that overexpression of Arabidopsis CAS family genes plays a positive role in salt stress tolerance and highlights the contribution of AOX to CAS-mediated plant salt resistance, mainly by reducing cyanide and H2S toxicity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tolerância ao Sal , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cianetos/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Óxido Nítrico Sintase/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia
15.
J Neural Transm (Vienna) ; 130(9): 1097-1112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36792833

RESUMO

The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.


Assuntos
Anfetamina , Dopamina , Animais , Feminino , Camundongos , Amidoidrolases/genética , Amidoidrolases/metabolismo , Anfetamina/farmacologia , Inibidores Enzimáticos/farmacologia , Genótipo , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética
16.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768662

RESUMO

The first enzyme, 1-Deoxy-D-xylulose-5-phosphate synthase (DXS), in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway for isoprenoid precursor biosynthesis has been reported to function differently according to species. However, the current state of knowledge about this gene family in Toona ciliata is limited. The TcDXS gene family was identified from the whole genome of T. ciliata by firstly using bioinformatics analysis. Then, the phylogenetic tree was built and the promoter cis-elements were predicted. Six DXS genes were identified and divided into three groups, which had similar domains and gene structure. They are located on five different chromosomes and encode products that do not vary much in size. An analysis of the cis-acting elements revealed that TcDXS genes possessed light, abiotic stress, and hormone responsive elements. Ultimately, TcDXS1/2/5 was cloned for an in-depth analysis of their subcellular localization and expression patterns. The subcellular localization results of TcDXS1/2/5 showed that they were located in the chloroplast envelope membranes. Based on tissue-specific analyses, TcDXS1/2/5 had the highest expression in mature leaves. Under Hypsipyla robusta stress, their different expressions indicated that these genes may have insect-resistance functions. This research provides a theoretical basis for further functional verification of TcDXSs in the future, and a new concept for breeding pest-resistant T. ciliata.


Assuntos
Toona , Transferases , Animais , Toona/metabolismo , Transferases/genética , Transferases/metabolismo , Filogenia , Melhoramento Vegetal , Óxido Nítrico Sintase/genética , Eritritol/metabolismo , Insetos/metabolismo
17.
Insect Mol Biol ; 32(2): 187-199, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36527288

RESUMO

Compared to other insects, the pea aphid Acyrthosiphon pisum has a reduced immune system with an absence of genes coding for a lot of immunity-related molecules. Notably, nitric oxide synthase (NOS), which catalyses the synthesis of nitric oxide (NO), is present in the pea aphid. However, the role of NO in the immune system of pea aphid remains unclear. In this study, we explored the role of NO in the defence of the pea aphid against bacterial infections and found that the NOS gene of the pea aphid responded to an immune challenge, with the expression of ApNOS observably upregulated after bacterial infections. Knockdown of ApNOS using RNA interference or inhibition of NOS activity increased the number of live bacterial cells in aphids and the mortality of aphids after bacterial infection. Conversely, the increase in NO level in aphids using NO donor inhibited the bacterial growth, increased the survival of bacteria-infected aphids, and upregulated immune genes, such as Toll pathway and phagocytosis related genes. Thus, NO promotes immune responses and plays an important role in the immune system of pea aphid.


Assuntos
Afídeos , Infecções Bacterianas , Animais , Afídeos/genética , Interferência de RNA , Óxido Nítrico Sintase/genética , Infecções Bacterianas/genética
18.
Free Radic Biol Med ; 191: 241-248, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084790

RESUMO

Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.


Assuntos
Meios de Contraste , Óxido Nítrico , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Sondas Moleculares , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo
19.
mBio ; 13(5): e0225122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121153

RESUMO

Mycobacterium tuberculosis infection is initiated by the inhalation and implantation of bacteria in the lung alveoli, where they are phagocytosed by macrophages. Even a single bacterium may be sufficient to initiate infection. Thereafter, the clinical outcome is highly variable between individuals, ranging from sterilization to active disease, for reasons that are not well understood. Here, we show that the rate of intracellular bacterial growth varies markedly between individual macrophages, and this heterogeneity is driven by cell-to-cell variation of inducible nitric oxide synthase (iNOS) activity. At the single-cell level, iNOS expression fluctuates over time, independent of infection or activation with gamma interferon. We conclude that chance encounters between individual bacteria and host cells randomly expressing different levels of an antibacterial gene can determine the outcome of single-cell infections, which may explain why some exposed individuals clear the bacteria while others develop progressive disease. IMPORTANCE In this report, we demonstrate that fluctuations in the expression of antimicrobial genes can define how single host cells control bacterial infections. We show that preexisting cell-to-cell variation in the expression of a single gene, that for inducible nitric oxide synthase, is sufficient to explain why some macrophages kill intracellular M. tuberculosis while others fail to control bacterial replication, possibly leading to disease progression. We introduce the concept that chance encounters between heterogeneous bacteria and host cells can determine the outcome of a host-pathogen interaction. This concept is particularly relevant for all the infectious diseases in which the number of interacting pathogens and host cells is small at some point during the infection.


Assuntos
Mycobacterium tuberculosis , Humanos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Mycobacterium tuberculosis/metabolismo , Interferon gama/metabolismo , Óxido Nítrico Sintase/genética , Macrófagos/microbiologia , Antibacterianos/metabolismo , Óxido Nítrico/metabolismo
20.
Genes (Basel) ; 13(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140820

RESUMO

Vasovagal syncope (VVS) is the most common cause of sudden loss of consciousness. VVS results from cerebral hypoperfusion, due to abnormal autonomic control of blood circulation, leading to arterial hypotension. It is a complex disease, and its development is largely associated with genetic susceptibility. Since abnormal neurohumoral regulation plays an important role in VVS development, we analyzed the association of VVS with polymorphic variants of ADRA1A, ADRB1, HTR1A, ADORA2A, COMT, and NOS3 genes, the products of which are involved in neurohumoral signaling, in patients with a confirmed VVS diagnosis (157 subjects) and individuals without a history of syncope (161 subjects). We were able to identify the associations between VVS and alleles/genotypes ADRA1A rs1048101, ADRB1 rs1801253, ADORA2A rs5751876, and COMT rs4680, as well as NOS3 rs2070744 in biallelic combination with COMT rs4680. Thus, we are the first to observe, within a single study, the role of the genes that encode α- and ß-adrenergic receptors, catechol-O-methyltransferase, adenosine receptors and nitric oxide synthase in VVS development. These findings demonstrate that the genes involved in neurohumoral signaling pathways contribute to the formation of a genetic susceptibility to VVS.


Assuntos
Síncope Vasovagal , Catecol O-Metiltransferase/genética , Predisposição Genética para Doença , Humanos , Óxido Nítrico Sintase/genética , Receptores Adrenérgicos beta/genética , Transdução de Sinais/genética , Síncope Vasovagal/diagnóstico , Síncope Vasovagal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...